- H = elevation head measured from the water source to the point of discharge
- L_j = total length of pipe in reach j
- m = number of land use classifications
- n = total number of pipe segments from water source to outlet
- o = output of the system
- P = optimum total installation cost of the pipe network
- Q_j = flow in pipe reach j
- r_i = expected return from ith parcel of land
- R = total expected return from the project
- R_s = relative sensitivity
- S_j = friction loss associated with pipe diameter d_j of segment j
- u = total number of pipe reaches
- V_j = velocity of water in pipe of diameter d_j in segment j
- w_i = water requirements for ith parcel of land
- W = total water demand for project
- X_i = optimum length of pipe i in a reach
- a = absolute sensitivity

References Cited

- Dantzig, G. B. 1963. Linear Programming and Extensions. Princeton University Press, Princeton, N. J., 625 pp.
- Hoppel, S. K., and W. Viessman. 1972. A linear analysis of a water supply system. Water Resources Bulletin 8(2): 304-10.
- Littleton, C. T. 1953. Industrial Piping. McGraw-Hill Book Co.
- McCuen, R. H. 1973a. The role of sensitivity analysis in hydrologic modeling. Journal of Hydrology 18: 37-53.
- ------. 1973b. Component sensitivity: A tool for the analysis of complex water resource systems. Water Resources Research 9(1): 243-6.
- ------. 1977. Application of Statistical Methods for Water Supply Forecasting on the Sevier River, Utah. Technical Report, Department of Civil Engineering, University of Maryland, College Park, Md.
- Means, R. S. 1973. Building Construction Cost Data, 1973. Construction Consultants and Publishers, 31st Edition.
- Simond, R. A., and L. A. Kinney. 1972. Application of Operation Research Methods for USBR Pipe Distribution Systems. Paper presented at ASCE National Water Resources Engineering Meeting, Atlanta, Ga.
- Soil Conservation Service. 1972. Snow Survey and Water Supply Forecasting. Section 22, SCS National Engineering Handbook, U. S. Department of Agriculture.

Anuran Locomotion—Structure and Function: The Jumping Forces of Frogs

George R. Zug and Ronald Altig

Department of Vertebrate Zoology, National Museum of Natural History, Washington, DC 20560, and Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762 respectively.

The flight of a jumping frog has been frequently compared to the trajectory of a missile or projectile (Gray, 1953; Gans and Rosenberg, 1966; Calow and Alexander, 1973). As such, the general ballistic equation and its related equations with minor modifications have been accepted as adequate mathematical descriptors of a frog's jump. To date, these equations have been examined only by using a single value of terminal velocity at liftoff or distance jumped (Gray, 1968; Calow and Alexander, 1973). Our goal has been to record the maximum force at liftoff in a variety of frog species in order to determine if our measure of force and the general ballistic equation or a modification thereof provide a reasonable estimate of terminal velocity and distance jumped.